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ABSTRACT 

Minimal, strongly proximal actions of locally compact groups on compact 

spaces, also known as boundary actions, were introduced by Furstenberg 

in the s tudy of Lie groups. In particular, the action of a semi-simple real 

Lie group G on homogeneous spaces G/Q, where Q C G is a parabolic 

subgroup, are boundary actions. Countable discrete groups admit a wide 

variety of boundary actions. In this note we show that  if X is a compact 

manifold with a faithful boundary action of some locally compact group 

H, then (under some mild regularity assumption) the group H, the space 

X,  and the action split into a direct product of a senti-simple Lie group 

G acting on G/Q and a boundary action of a discrete countable group. 

1. I n t r o d u c t i o n  

Let G be a locally compact  group (hereafter locally compact groups are always 

assumed to be second countable). A compact  Hausdorff space X with a jointly 

continuous G-act ion G × X -+ X,  (g, x) F-+ g • x, will be called a G- space .  A 

G-space X is m i n i m a l  (or the G-act ion on X is minimal) if X has no proper 

closed G-invariant subsets; equivalently if every G-orbit  G • x is dense in X.  By 

Zorn's lemma every compact  G-space X contains a closed G-invariant set. X '  C_ X 

which is a minimal G-space. 

* The author was partially supported by NSF grants DMS-0049069, 0094245 and 
GIF grant G-454-213.06/95. 
Received November 19, 2001 

173 



174 A. FURMAN Isr. J. Math. 

Given a compact G-space X consider the set P(X) of all Borel probability 

measures on X equipped with the weak-* topology induced by continuous func- 

tions C(X). Then P(X) is a convex compact subset of the unit ball in C(X)*, 
equipped with a c o n t i n u o u s  aff ine a c t i o n  of G induced by the G-action on X. 

In dynamics one often studies G-spaces X which support an invariant probability 

measure, i.e., G-spaces for which the affine G-action on P(X) has a fixed point. 

Amenable groups are precisely characterized by the property that  every G-space 

admits G-invariant probability measures. In this note we shall be interested in 

G-spaces X which exhibit an opposite behavior. More precisely 

Definition 1 (Furstenberg, [2]): A compact G-space X is called s t r o n g l y  prox i -  

m a l  if for every probability measure p C 7:'(X) the G-orbit G.# C P(X) contains 

Dirae measures ~x in its weak-* closure. A G-space which is minimal and strongly 

proximal will be called a G - b o u n d a r y  (we shall also say that  the G-action on 

X is a b o u n d a r y  ac t ion) .  

By definition X is a G-boundary iff every orbit G • # in the affine G-action 

on P(X) contains the set 5x = {Sx I x E X} in its closure. Since 5x is the set 

E x t P ( X )  of extremal points of 7'(X), one has 

(1) A G-space X is a G-boundary iff the affine G-action on P(X) admits no 

proper closed convex invariant subsets. 

One can also consider the following more general setup: let E be a locally 

convex topological vector space with a continuous affine G-action, and V c 

E be a convex compact G-invaxiant subset. The restriction of the affine G- 

action to V will be called an aff ine r e p r e s e n t a t i o n .  An afline G-representation 

on V is i r r e d u c i b l e  if V does not contain G-invariant closed convex proper 

subsets. The following basic facts summarize some of the results and observations 

made by Furstenberg who introduced the above notions of boundaries and affine 

representations [2], [3] (see also Glasner's [5]): 

(2) An affine G-representation on V c E is irreducible iff the G-action on the 

closure Ext(V) of the set of all extremal points of V is a boundary action. 

(3) Any quotient of a G-boundary is a G-boundary, i.e., if p: X -+ Y is a 

continuous surjection between G-spaces X and Y and X is a G-boundary 

then so is Y. 

(4) Given a locally compact group G there exists a unique, up to isomorphisms, 

m a x i m a l  G - b o u n d a r y  B(G) which is universal in the sense that  any 

G-boundary X can be obtained as a quotient Px: B(G) -+ X with the 

continuous G-equivariant surjection Px being uniquely determined. Sim- 

ilarly, there exists a unique maximal irreducible affine G-representation 
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V(G) which is universal in the sense that  for any irreducible attine G- 

representat ion W there exists a unique continuous G-equivariant affine sur- 

jection qw: V(G) --+ W. It  follows tha t  V(G) = P(B(G)). The universal 

boundary  B(G) is a Hausdorff compact  space, but  in general it need not 

be metrizable (resp. V(G) need not be separable). 

(5) A locally compact  group G is amenable iff B(G) is trivial, i.e., is a point• 

More generally, if G is a locally compact  group containing a closed amenable 

subgroup P so tha t  G/P is compact ,  then the universal G-boundary  B(G) 

is a G-equivariant image of G / P  by a unique continuous surjective map 

re: G /P  -+ B(G), and every G-boundary  X is obtained as a G-equivariant 

quotient G/Q where Q _D P is a closed subgroup. In particular,  if G is 

a connected semi-simple real Lie group with finite center and no compact  

factors, then B(G) = G/P  with P = AN being a minimal parabolic, where 

G = K A N  is the Iwasawa decolnposition of  G. In this case B(G) is also 

known as the F u r s t e n b e r g  b o u n d a r y .  

(6) Let F c G be a lattice in a locally compact  group G. Then  the F-action on 

B(G) is a boundary  action• However, typically B(G) is not  the maximal  

F-boundary.  

The purpose of this note is to describe boundary  actions of general locally 

compact  groups G and to discuss to what  extent the s tructure of  a G-boundary  

X (or B(G)) as a topological space determines the group G. 

2. S t a t e m e n t  o f  t h e  results  

Let X be a compact  ~-manifold without  a boundary,  let d be a metric on X 

associated with some smooth  Riemannian s tructure ~nd assume tha t  H is a 

locally compact  group with a continuous action by homeomorphisms on X.  We 

shall say tha t  this action satisfies the following proper ty  

(Hr) H acts by - ~ - H S l d e r  homeonlorphisms; or more precisely tha t  there exists 

a neighborhood U of the identity in H so tha t  for each h E [7 there is a 

constant  C = C(h) so that  

C -1  d(:r, n+: n • y)--~- < _ d ( h . x , h . y ) < _ C . d ( x , y ) ~ .  

(QC) H acts by quasi-conformal maps on X with respect to the conformal struc- 

ture defined by a smooth  Riemannian metric on X.  

THEOREM 2: Let X be a compact n-manifold which is an H-boundary where 

H is a locally compact group and let H1 :=  H/Ker(H -+ Homeo(X)) .  Assume 

that either (C) n = 1, i.e., X is a circle, or that the Hi-action on X satisfies (Hr), 
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or the Hi-action on X satisfies (QC). Then H1 contains a subgroup H2 of finite 

index such that 

• The H2-action on X is a boundary action. 

• Tile group H2 is isomorphic to a direct product G x A, where A is either 

trivial or is an infinite discrete countable group, G is either trivial or is a 

connected real semi-simple Lie group with trivial center and no non-trivial 

compact factors; the index [H1 : H2] divides I Out(G)l. 

• The manifold X is homeomorphic to a direct product of compact spaces 

Y x Z, where Y is G-boundary (isomorphic to Y TM G/Q)  and Z is an 

A-boundary, so that the H2 ~ G x A-action on X ~- Y x Z corresponds to 

the G-action on Y = G/Q and the A-action on Z. 

COROLLARY 3: Let H be a locally compact group with a faithful boundary action 

on a compact manifold X which does not split as a non-trivial direct product of 

topological spaces. I f  the H-action on X satisfies one of the assumptions (C), 

(Hr), (QC) above, then 

• either H is a discrete infinite countable group, or 

• H is a connected semi-simple real Lie group G with trivial center and no 

non-triviM compact factors, and as a G-space X is isomorphic to G / Q  

where Q c_ G is a parabolic subgroup. 

The assumptions (C), (Hr), (QC) in the theorem are used to ensure that the 

locally compact group Hi  satisfies No  Smal l  S u b g r o u p s  (abbreviated, NSS)  

property, which means that H1 has a neighborhood U of the identity that does 

not contain non-trivial subgroups; or equivalently, that Ha contains a neighbor- 

hood U' of the identity which contains no non-trivial compact subgroups. Real 

Lie groups and discrete groups are typical examples of groups with NSS prop- 

erty; while p-adie Lie groups and other totally disconnected non-discrete groups, 

such as the group of automorphisln of a regular tree, have families of "small 

subgroups". However, for groups acting faithfiflly on topological manifolds the 

following generalization of Hilbert's 5-th problem is conjectured to hold: 

HILBERT SMITH CONJECTURE: Every locally compact group acting faithhdly 

by homeomorphisms an a topological manifold has NSS property. 

This conjecture is known to hold in the following cases: 

(a) If dim X = 1, i.e., X is a topological circle S 1 = R/Z. This follows from the 

fact that any compact subgroup of Homeo+ (S 1) is conjugate to a subgroup 

of the rotation group SO(2), which has NSS property. 
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(b) Let X be an n-manifold equipped with some Riemannian metric d. If  

H C Homeo(X) is a locally compact group, such that  some neighborhood 

U of the identity in H consists of ~+2-HSlder homeomorphisms, then H 

has NSS property (Maleshich [7]). 

(c) Let X be a differentiable manifold with a conformal structure on it and H 

be a locally compact group acting by quasi-conformal maps on X; then H 

has NSS property (Martin [8]). 

Assumptions (C), (Hr) and (QC) correspond to (a), (b) and (c) above. If /when 

proved, the Hilbert-Smith conjecture will allow us to drop these assumptions in 

the theorem. 

Remarks 4: 

(i) Observe that  for the circle X = S 1 the theorem asserts that  any locally 

compact group H acting faithfully, minimMly and strongly proximally on 

S 1 is either discrete or is isomorphic to either PSL2(R) or to its double 

cover PGL2 (R), so that  the action is continuously conjugate to the standard 

projective action of these groups on RP 1 ~ S 1. In fact, in the case of the 

circle it can be shown that  the only non-discrete locally compact groups 

with faithful minimal (but not necessarily strongly proximal) actions on S 1 

are PSL2(R), PGL2(R), SO(2) and 0(2).  However, the class of discrete 

groups with a faithful boundary action on the circle is already huge and 

includes, besides many discrete subgroups of PSL2(N), Thompson groups 

and fundamental groups of many 3-manifolds (see Ghys [4]). 

(ii) If  one is willing to assume the Hilbert Smith conjecture (or to apply condi- 

tions (Hr) or (QC), when relevant) then one could deduce from Corollary 3 

that  

- The only non-discrete locally compact groups with a faithful bound- 

ary action on the sphere X = S 2 are G = Isom+(N a) and its dou- 

ble cover Isom(H 3) -~ Aut(G) (these are the simple Lie group G = 

PO(3, 1) ~ PSL2(C) and its group of automorphisms) with the ac- 

tion being conjugate to the standard one, when one identifies the 

Riemann sphere S '~ with the boundary 0I~ 3 of the hyperbolic 3-space 

IHP. 

- The only non-discrete locally compact groups with a faithful bound- 

ary action on the projective plane X = RP 2 is SL3(R) with the action 

being conjugate to the standard (i.e., projective) one. 

- There are no non-discrete locally compact groups with a faithful 

boundary action on a compact surface Eg of genus g _> 2. 
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(iii) For spheres X = S k one obtains several families of non-discrete locally 

compact groups with a faithful boundary action on S k, namely G and 

its double cover Aut G where G is the following rank-one simple Lie group: 

G = PO(n,  1) with k = n - l ,  G = PU(n, 1) with k = 2 n - l ,  G = PSp(n, 1) 

with k = 4n - 1, G = F4(-20) with k = 15. 

(iv) At the same time one can show that  any manifold admits a variety of 

boundary actions by a free group F2, so one should not expect to classify 

boundary actions of discrete groups even on nice spaces. 

The question of describing non-discrete locally compact groups with a faithful 

boundary action on a manifold appeared in the context of the following 

PROBLEM: Given a discrete finitely generated group F, describe all locally 

compact groups H which admit  a c o e o m p a e t  l a t t i c e  e m b e d d i n g  of F, i.e., 

an embedding j: F ~ H with j (F)  being a discrete subgroup in H with H/j(F) 

compact. 

Observe that  any discrete group F forms a eocompact lattice in semi-direct 

products F ~ K by any compact group K (and any homomorphism F -+ Aut K)  

via the embedding 7 ~ (7, el<). These constructions, and their obvious mod- 

ifications obtained by passing to finite index subgroups, are "trivial" examples 

of cocompact lattice embeddings. A potentially non-trivial class of examples of 

coeompaet lattice embeddings can be obtained by considering the Cayley graph 

Xr,~ of F with respect to some finite symmetric set E of generators and taking 

H to be Aut(Xr ,x)  - -  the totally disconnected group of all automorphisms of 

the Cayley graph Xr,x.  In addition, fundamental groups F = 7rtM of compact 

locally symmetric manifolds M have natural cocompact lattice embeddings in 

the semi-simple Lie group G = Isom+(/~/), and in direct products H = G x K 

where K is an arbi trary compact group. 

In [1] cocompact lattice embeddings of F in an arbitrary locally compact group 

H were classified for flmdamental groups F = 7riM of compact (and finite volume, 

in higher rank cases) locally symmetric manifolds M,  i.e., groups F which admit  

lattice embeddings in a semi-simple Lie group G. In these cases it was proven 

that,  up to finite index and centers, the natural  F-embeddings in semi-direct 

products F ~ K and G x K (in both cases K is compact) are the only examples 

of cocompact lattice embeddings. In particular, for these groups one always has 

[Aut(Xr,x) : F] < e~. 

Recall that  Gromov and Thurston [6] proved that  in each dimension n _> 4 

there exist compact manifolds M which admit Riemannian structures of strictly 
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negative curvature, but do not carry a locally symmetric structure. Very little is 

known about  the structure of the fundamental groups F = 7q M of such manifolds, 

beyond the fact that  these are Gromov hyperbolic groups which do not embed as 

cocompaet lattices in senti-simple Lie groups. However, assuming the Hilbert 

Smith conjecture one would be able to deduce the following: 

COROLLARY 5: Let F = 7rim be the fundamental group of a compact manifold 

M which admits a Riemannian structure of  strictly negative curvature, but does 

not admit a locally symmetric  one. Let H be a locally compact group which 

admits an embedding j: F --+ H with j (F)  being a cocompact lattice in H. Then 

the Hilbert Smi th  conjecture implies that F is contained in a closed subgroup 

He C_ H of finite index in H, so that He is isomorphic to a semi-direct product 

F b< K where K is a compact group. In particular, for any finite symmetric  set 

E of generators for F the Cayley graph Xr ,~  admits at most finite number of 

automorphisms, up to translations by F, i.e., [Aut(Xr, r )  : F] < oc. 

Remark 6: Consider P = 7rim as above and let H := I som( f l )  where the uni- 

versal cover 5I  of M is equipped with the lift of some t/ iemannian metric on M. 

In this case it is well known that  H is a locally compact group with NSS prop- 

erty, and therefore H is a discrete group containing F as a finite index subgroup. 

More generally, if (M, g) is a negatively curved manifold, then Isom(2~/) is either 

discrete or 2~I is a symmetric space in which case Isom(21)) is a rank-one simple 

Lie group. 

This note is organized as follows. The proof of Theorem 2 is divided into 

two steps: splitting the acting group (section 4) and splitting the space and 

the actions (section 5). Application 5 is derived in section 6. We preface the 

discussion with a general remark about the amenable radical. 

3. T h e  a m e n a b l e  radica l  

Recall that  a locally compact group H is amenable iff every compact H-space X 

has an H-invariant probability measure or, equivalently, every affine H-  

representation has a fixed point. Moreover, for this characterization it suffices to 

consider only compact metric H-spaces (i.e., separable affine H-representation).  

We shall use this opportunity to generalize this fact. 

PROPOSITION 7 (The Amenable Radical): Let H be a locally compact group. 

Consider the following subgroups of H: 

(1) No = Ker (H --+ Homeo(B(H)) .  
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(2) N1 = NierKer(H-~!-~Homeo(Xi)) ,  where {H -4 Homeo(Xi)}ie~ is the 

collection of all isomorphism classes of boundary H-actions on compact 

metr/c spaces Xi. 

(3) Nam - -  the group generated by all dosed normal amenable subgroups in 

H. 

Then No = N1 = Nam is the maximal dosed normal amenable subgroup of H, 

which can be called the a m e n a b l e  r ad i ca l  of H. 

Proo£" Let N be a closed normal amenable subgroup of H and X be a compact 

metric H-boundary.  Denote by PN C_ P(X)  the set of all N-invariant probability 

measures on X. This is a closed convex subset of the compact convex set P(X) .  

Since N is amenable, PN is non-empty; and since N is normal, PN is an invariant 

set for the affine H-act ion on P(X) .  As the latter affine H-act ion is irreducible 

we have PN = P(X) ,  and in particular ~x C PN. Hence N acts trivially on 

X. This argument applies to all compact (metric) boundary H-actions X,  which 

means that  N c N1 = ('l~er Ker (H -4 Homeo(Xi)).  Hence Nam C N1. 

By the maximali ty of B(H) we have N1 C_ No and the latter is a closed normal 

subgroup of H. Therefore, proving that  No is amenable would imply No C_ N~,~ 

and yield the equalities No = N1 = ?Cam. 

Assume that  No is not amenable. Then one can find a continuous N0-action 

on some compact metric space M which has no invariant measures. A standard 

construction of induction allows one to induce linear or attine representations 

from a closed subgroup (here No) to the larger group H (see Zimmer [10] 4.2 for 

details). In our case, consider the space L~(H/No,C(M)*) = LI(H/No, C(M))* 

with the weak-* topology, and its convex compact subset W consisting of all 

classes of Borel functions p: H/No -4 P(M),  #: x ~ #x e P(M),  where # 

is identified with # '  if px = p~ for a.e. x E H/No. Choosing a measurable 

cross section a : H/No -4 H of the projection rr: H -4 H/No, one can define a 

measurable cocycle a: H x H/No -4 No by 

a(h, h'No) = a(hh'No)-l ha(h' No) 

and verify that  the H-act ion on W defined by 

(h. #)~ -- a(h,x) . #~, x • H/No 

gives a continuous (!) affine representation of H. Let V C_ W be a minimal H- 

invariant convex compact set (i.e., an irreducible affine H-representation). Since 

No acts trivially on B(H), it acts trivially in the universal irreducible affine H-  

representation, and thereby trivially on V. Observe that  since No is normal in 
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H,  for every h E No and ahnost every x C H/No 

(3.1) h . x = x  and c ~ ( h , x ) = a ( x ) - l h a ( x ) .  

Fix an #: H/No -+ P ( M )  fi'om V. Then for a.e. x E H/No  the measure Px C 

7)(M) is fixed by a ( x ) - l h a ( x )  for a.e. h E No (Fubini theorem applied to (3.1)), 

and therefore by the whole No. This contradicts the assumption. Hence No is 

amenable and the proof is completed. | 

We shall use the following immediate corollary (explicitly shown at the 

beginning of the proof): 

COROLLARY 8: A dosed normal amenable subgroup N of a locally compact 

group H acts trivially on every H-boundary X .  

4. Splitting the group with NSS property 

PROPOSITION 9: Let H be a locally compact group with a faithful boundary ac- 

tion on a compact space X .  Assume that H has NSS property. Then H contains 

a closed normal subgroup Ho of finite index in H, which still acts minimally and 

strongly proximally on X and is isomorphic to a direct product Ho ~ G x A, 

where G is either trivial or is a connected semisimple real Lie group with trivial 

center and no non-trivial compact factors, and A is either trivial or is an infinite 

discrete countable group. The index [H : Ho] divides [ Out(G)[. 

Proof: Denote by G the connected component of the identity in H. By the 

flmdamental results of Montgomery and Zippin ([9]), the assumption that  H has 

NSS property means that  G is a connected Lie group. It  is normal in H and the 

factor group A := H / G  is a totally disconnected locally compact group. 

Assume that  G is non-trivial. Observe that  any closed amenable characteristic 

subgroup of G is a closed amenable normal subgroup in H and therefore is trivial 

by Corollary 8. Hence G has trivial radical, trivial center and no compact  factors. 

Next observe that  H acts on G by conjugation, which gives rise to a homo- 

morphism 

H ~ AutG.  

Recall that  Aut G contains Ad G ~ G as a finite index subgroup. Let H0 denote 

the preimage of G and let A = Zuo (G) denote the centralizer of G in/4o. By the 

definition of H0 for each h E H0 there is a (unique) gh C G, SO that  

h - l g h  = g~tggh (g E G), 
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which means that  Ho = G • A, and moreover Ho is (isomorphic to) the direct 

product G x A. Since A is isomorphic to H0 modulo its connected component of 

the identity G, the group A is totally disconnected. At the same time being a 

closed subgroup of the NSS group Ho, A has to be discrete. 

Finally, observe that  a restriction of the boundary H-action on X to a finite 

index subgroup Ho C H is still a boundary action. (This is the simplest case of 

fact (6) from the introduction.) Indeed, let hi = e, h2 . . . . .  hn be some represen- 

tatives of the cosets H/Ho,  and let V be a minimal closed convex H0-invariant 

subset of P ( X ) .  Consider the collection W C_ P ( X )  of all probability measures 

of the form 
h11~1 + ' " +  hnp~ 

# = where #i E V. 
n 

Then W is a closed convex H-invariant subset of P ( X )  and is therefore W = 

P ( X ) .  In particular 5x C_ W.  Since 5x consists of extremal points of P ( X )  we 

have 5x C_ V and therefore V = P ( X ) .  Thus X is an H0-boundary. | 

5. Sp l i t t ing  t h e  space  and  t h e  a c t i o n  

THEOREM 10: Let X be an H-boundary for a locally compact group H which 

is a direct product H = G × L of two locally compact groups. Assmne that G 

can be written as G = K • P, where K C_ G is a compact subgroup and P C_ G 

is a closed amenable subgroup. Then there is a homeomorphism O: X -+ Y x Z, 

O(x) ----- (¢(x), g,(x)), identifying X with a direct product of  a G-boundary Y and 

an L-boundary Z, so that 

0((g, l ) .  x) = (g. ¢(x), I .  ~,(x)). 

The G-space Y can be identified with G / Q  where Q is a closed subgroup P C_ 

QC_G. 

The assumption G = K .  P (for a semi-simple Lie group G this is the Iwasawa 

decomposition) is used in the following key Lemma. 

LEMMA 1 1: K C G acts transitively on G-orbits. In particular, every G-orbit 

G • x C X is compact. 

Proof'. Denote by P p  C_ •(X) the set of all P-invariant probability measures 

Oll X. This is a non-empty convex compact subset of P ( X ) ,  which is L-invariant 

because L commutes with P.  Observe that  the set 

G. Pp = {k. c P(X) I k K, pg} 
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is a non-empty  closed subset of P ( X ) ,  which is still L-invariant by commutat ivi ty .  

For every # E ~ p  the H-orbi t  H • p satisfies 

H .  # = (G x L) . # = L . (G .  #) c L ( G .  7:'p) = G .  Pp .  

By definition of  boundary  actions every Dirac measure 5~ is contained in a closure 

of H • p C G • Pp ,  and since the set G • "~p is already closed, we conclude that  

(~,( C G • T'p. Therefore, for every x E X the G-orbit  G • 5x intersects Pp ,  i.e., 

every G-orbit  G .  x in X contains a P-fixed point. Since G = K .  P the group K 

acts transitively on each G-orbit.  | 

Every G-orbit  G .  z in X can therefore be identified with G / G x ,  where G~ :=  

{g E G I g" x = x} denotes the G-stabilizer of x E X.  G~ are closed subgroup of 

G. 

PROPOSITION 12: All  G-stabilizers Gx are conjugate (in G) to each other. 

For the proof  of the Proposi t ion we shall need to compare "sizes" of G-orbits. 

Since K acts transitively on G-orbits (Lemma 11) every G-orbit  G • x TM G / G x  

can be viewed as K / K x  where K~ = {k E K I k . x  = x}. Consider a partial order 

between conjugacy classes [I('] of closed subgroups K '  c_ t ( ,  with [t('] ~_ [I("] 

if there exists k E K so tha t  K ~ C_ k - l K ' k .  (Thus the orbit  G • x is as "large" 

as G . y  if [I(x] ~ [Ky].) Observe tha t  

[I('] ___ [K"] and [I("] ~_ [t('] implies [K'] = [K"]. 

To see this it suffices to check that  if K ~ is a closed subgroup of N and k E K 

satisfies k - l I ( ~ k  c_ I f  p, then k - l K ~ k  = K ~. This is evident for finite groups 

and for compact  connected Lie groups, and hence follows for all compact  groups 

which are inverse limits of the former families of compact  groups. 

LEMMA 13: I f  xn --+ x ,  in X and [t£x,,] -Y_ [I(-r,~+l] for all n, then [A'xn] Y [Kx,] 

for at1 n. 

Proof: Replacing, if necessary, :~n s by Yn = k,~ • xn with an appropria te  kn E 

I ( ,  we can assume tha t  A'y, C_ I(y,,+l for all n, and passing to a convergent 

subsequence we may assume that  y .  --+ y.  = k . x .  with k E K.  Then Ky,, _C I(y.  

for all n in the subsequence, because for k E I(y n , 

k . y . = k ,  l i m y , =  l i m k . y . =  l i m y n = y . ,  
n ~  n - - ~  OO 7 t , -4OO 

so tha t  k E tt 'y., and therefore [h'x~] = [ICy,] _~ [t~y,] = It(x,]- Since this applies 

to any subsequence of the original sequence the lemma is proved. | 
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Proof  Proposi t ion 12: Since any sequence in X contains a convergent subse- 

quence, Lemma 13 shows that  there exist points x • X with maximal  stabilizers, 

i.e., points x with the property that  if [Ks] ~ [I(y] then [I(y] = [Kx]. Let x,  be 

such a point with a maximal stabilizer I (s .  and let X,  = {x • X I [t(~] = [t(s. ]}. 

Then X ,  is a non-empty closed set. Indeed, if Xn --+ y and x ,  • X, ,  then by 

the last lemma [Iis.] = [I(s~] ~ [Iiy] and by the maximali ty of [Ks.] we have 

[Ks.] = [K~], i.e., y • X, .  Hence X ,  is closed. The set X,  is clearly G-invariant 

and also L-invariant, by commutativity.  We conclude that  X,  = X because 

H = G × L acts minimally on X. Thus all stabilizers Ks  are mutually conjugate, 

and therefore all G-stabilizers Gs, x E X, are conjugate in G. | 

Observe that  in the case of a semi-simple Lie group G the proof of 

Proposition 12 can be simplified, since stabilizers Gs in G are parabolic sub- 

groups and there are only finitely many conjugacy classes of those in G, and the 

partial order argument is not needed. 

Now let us fix a point o • X and denote Y := G/Go .  Proposition 12 implies 

that  for every x • X there exists gs • G, so that  G~ = g~lGogx.  

LEMMA 14: The map  ¢: X --+ Y = G/Go  given by ¢(x) = gsGo is a well defined 

continuous map. 

P r o o f  Assume that  for some x E X both gl and 92 in G satisfy 

Gs = g~ lGogl  = g21Gog2. 

Then (g lg21) -1Go(g lg~  1) = Go, so that  g2g~ 1 • o = o and therefore glGo = 

g2Go • G /Go .  Hence ¢: X --+ G/Go  is indeed well defined. 

To verify continuity of ¢, consider x~ -~ x in X. Since G / G o  is compact,  upon 

passing to a subsequence and replacing gz~ by gym with gs~ Go = gyn Go, we can 

assume that  gy,~ -+ gy in G. Thus g~n Xn --+ gy " x while -1 • gym Gogy~ • Xn -~ Xn.  

This means that  every g • Go satisfies 

g . (gy,~ . x~) = gy~ . X~, g . (gy . x)  = gy . x,  

which shows that  gy lGogy  = Gs,  i.e., ¢(y) -- gyGo = g~Go = ¢(x), proving 

¢ ( X n )  -'+ ¢ ( X ) .  m 

LEMMA 15: For any L -min imal  set Z C X and any  G-orbi t  G . x  the intersection 

Z ~ G • x consists o f  at most one point .  

Proof: As G and L commute, Gs = Gl.x for all l E L and x E X. Hence ¢(x) is 

constant on L-orbits. Since ¢ is continuous (Lemma 14) it has to be constant on 
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any minimal L-set. On the other hand, on every G-orbit  G • x = G/Gx the map 

¢: G/Gx -+ G/Go is a bijection (actually homeomorphism).  Hence IZNG.x] <_ 1. 
| 

By Lemma 11 all G-orbits  on X are compact  and therefore the projection 

7r: X --+ X/G is a continuous surjective map between compact  spaces, which is 

equivariant with respect to the H-ac t ion  on X and the well defined L-act ion on 

X/G. Hence X/G is an L-boundary.  

Fix an L-minimal  set Z C_ X.  The projection zr(Z) C X/G is a non-empty 

closed L-invariant set and therefore 7r(Z) = X/G by the minimali ty of the L- 

action on X/G. Lemma 15 states tha t  7r: Z -+ X/G is one-to-one and therefore is 

an L-equivariant homeomorphism.  Thus for every x E X there is a unique point 

zx E Z so that  7r(x) = 7r(zx), and therefore there is a g E G so that  x = g .  zx. 

The map Z -+ gZ given by z ~-+ g • z is an L-equivariant homeomorphism,  so 

that  gZ is also an L-lninimal set, and the whole space X is a disjoint union of 

L-minimal  sets gZ. 
One can now replace the mininlal L-set Z by an appropriate  g-translate,  so 

tha t  the reference point o E X would be in Z. After this adjus tment  define the 

map .~,: X -+ Z by 7r(x) = 7r(~,(x)), and observe tha t  for all x E X,  g E G, I E L 

one has 
S,((s, 0 - x )  = t .  S,(x), ¢((g, 0 .  :~) = g .  ¢(x). 

Since the nlaps '~,: X --+ Z and ¢: X --+ G/Go are continuous, so is 

o: x -> Y x z ,  o(x)  = (¢( .h,  ~/'(:h). 

Finally, by Lemma 15 the map 0 is one-to-one. This completes the proof  of 

Theorem 10. | 

Theorem 2 now follows from the cited results which guarantee the NSS proper ty  

for the faithfully acting group, Proposi t ion 9 and Theorem 10. 

6. P r o o f  o f  C o r o l l a r y  5 

Let r = 7rl M be a fundamental  group of a compact  n-manifold M which admits  a 

negatively curved Riemannian structure,  but  does not carry a locally symmetr ic  

one, and let j :  F -+ H be a cocompact  lattice embedding o f f  in a locally compact  

group H. Denote by OF the (ideal) boundary  of the hyperbolic group F, which 

can be identified with the (visual) boundary  O~i of the universal cover ~:I of M 

and is, therefore, homeomorphic  to the sphere S '*-1. The natural  continuous 

F-action o51 0P ~ S " - I  , which we shall denote by p: F --+ Homeo(0F) ,  is faithful 
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minimal and strongly proximal (in fact F acts as a convergence group on its 

boundary).  

It  is shown in [1] (Theorem 3.5) that  given an embedding j:  F ~ H as a 

cocompact lattice, there exists a homomorphism 

= ~j :  H >Homeo(0F) 

so that  • o j:  F --+ Homeo(0F) coincides with p: F --+ Homeo(0F) and, with 

respect to the uniform topology on Homeo(0F), the homomorphism • is con- 

tinuous, has a compact kernel K1 = Ker(~)  and a closed image H1 = ~ ( H )  C 

Homeo(0F),  so that  H1 is a locally compact group which contains p(F) ~ F as 

a cocompact lattice. Therefore H1 acts as a convergence group on OF TM S ~-  1, 

and in particular S '~-1 is an Hi-boundary.  

Assuming the Hilbert Smith conjecture, Ht  satisfies the NSS property. Since 

S n-1 does not split as a non-trivial direct product of spaces, by Theorem 2 either 

H1 contains a finite index subgroup H2 isomorphic to a semi-simple connected 

Lie group G, o r / / 2  is discrete. (One could also argue that  Gromov hyperbolic 

groups, such as F, cannot be embedded as a cocompact lattice in a direct product 

of two non-compact groups, so for H2 -- G × A either A or G is trivial.) The 

first possibility, H1 being a semi-simple Lie group, is excluded by the assumption 

that  M does not carry any locally symmetric Riemannian structure. Hence H1 

is a discrete countable group, which contains p(F) as a cocompact lattice, i.e., as 

a finite index subgroup. Let Ho = q~-l(p(F)) and I (  = K 1 0  Ho. We have an 

exact sequence 

1 )/~" >Ho-----+p(F)----+l 

which splits by p(r) P-l~r-L~H0. Hence Ho is isomorphic to a semi-direct product 

F ~< K,  where F acts on K by "~: k -+ j(~/)-lkj(~/). 

Now let E be a finite symmetric generating set for F and let Xr,E denote 

the corresponding Cayley graph. H := Aut(Xr,~)  is a locally compact group 

containing F (acting by translations) as a cocompact lattice. Indeed, H/F  can 

be identified with a stabilizer K~ of a vertex v~ in Xr,~v which is a compact group. 

Hence F C_ Ho C H with [H : H0] < oc and H0 ~ F ~< K for some compact normal 

group K C H0. We claim that  K has to be finite, so that  after passing to the 

kernel H1 of Ho --+ Aut K which still has a finite index in H = Aut(Xr,~) ,  one 

would obtain Hi  C_ F. To see that  K is finite, observe that  for k E K one has 

k ( v , )  = k ( , O ¥ ) )  = -yk'(v.). 
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where k ~ = 7 - 1 k 7  E K.  As K is compact ,  the orbit {k(ve) I k E I (}  is bounded,  

which means tha t  

d(t'(v~), v~) _< D < oo 

for some fixed D and all 'v~ E V :=  V ( X r , z ) ,  k E K.  Balls B ( v , D )  :=  {u E 

V [d(v, u) <_ D} have at most  N :=  I~vl v elements. Since every k E h" together 

with all its powers belongs to K,  it permutes  vertices in each ball B(v,  D), and 

therefore k x! fixes every v. Hence k N! = e for all k E K,  i.e., K is finite. The 

corollary is proved. | 
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